1.刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位。他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产。
《九章算术》约成书于东汉之初,共有246个问题的解法。在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列,但因解法比较原始,缺乏必要的证明,而刘徽则对此均作了补充证明。在这些证明中,显示了他在多方面的创造性的贡献。他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根。在代数方面,他正确地提出了正负数的概念及其加减运算的法则;改进了线性方程组的解法。在几何方面,提出了"割圆术",即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法。他利用割圆术科学地求出了圆周率π=3.14的结果。刘徽在割圆术中提出的"割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣",这可视为中国古代极限观念的佳作。
《海岛算经》一书中, 刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和富有代表性,都在当时为西方所瞩目。
刘徽思想敏捷,方法灵活,既提倡推理又主张直观。他是我国最早明确主张用逻辑推理的方式来论证数学命题的人。
刘徽的一生是为数学刻苦探求的一生。他虽然地位低下,但人格高尚。他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。
祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人。他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家。
2. 祖冲之在数学上的杰出成就,是关于圆周率的计算。秦汉以前,人们以"径一周三"做为圆周率,这就是"古率"。后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一。直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长。刘徽计算到圆内接96边形,求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确。祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间。并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数。祖冲之究竟用什么方法得出这一结果,现在无从考查。若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的。祖冲之计算得出的密率,外国数学家获得同样结果,已是一千多年以后的事了。为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率"。
祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元。
祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算。他们当时采用的一条原理是:"幂势既同,则积不容异。"意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等。这一原理,在西文被称为卡瓦列利原理,但这是在祖氏以后一千多年才由卡氏发现的。为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理"。
3.欧拉(Leonhard Euler 公元1707-1783年) 1707年出生在瑞士的巴塞尔(Basel)城,13岁就进巴塞尔大学读书,得到当时最有名的数学家约翰·伯努利(Johann Bernoulli,1667-1748年)的精心指导。
欧拉渊博的知识,无穷无尽的创作精力和空前丰富的著作,都是令人惊叹不已的!他从19岁开始发表论文,直到76岁,半个多世纪写下了浩如烟海的书籍和论文。到今几乎每一个数学领域都可以看到欧拉的名字,从初等几何的欧拉线,多面体的欧拉定理,立体解析几何的欧拉变换公式,四次方程的欧拉解法到数论中的欧拉函数,微分方程的欧拉方程,级数论的欧拉常数,变分学的欧拉方程,复变函数的欧拉公式等等,数也数不清。他对数学分析的贡献更独具匠心,《无穷小分析引论》一书便是他划时代的代表作,当时数学家们称他为"分析学的化身"。
欧拉是科学史上最多产的一位杰出的数学家,据统计他那不倦的一生,共写下了886本书籍和论文,其中分析、代数、数论占40%,几何占18%,物理和力学占28%,天文学占11%,弹道学、航海学、建筑学等占3%,彼得堡科学院为了整理他的著作,足足忙碌了四十七年。
欧拉著作的惊人多产并不是偶然的,他可以在任何不良的环境中工作,他常常抱着孩子在膝上完成论文,也不顾孩子在旁边喧哗。他那顽强的毅力和孜孜不倦的治学精神,使他在双目失明以后,也没有停止对数学的研究,在失明后的17年间,他还口述了几本书和400篇左右的论文。19世纪伟大数学家高斯(Gauss,1777-1855年)曾说:"研究欧拉的著作永远是了解数学的最好方法。"
欧拉的父亲保罗·欧拉(Paul Euler)也是一个数学家,原希望小欧拉学神学,同时教他一点教学。由于小欧拉的才人和异常勤奋的精神,又受到约翰·伯努利的赏识和特殊指导,当他在19岁时写了一篇关于船桅的论文,获得巴黎科学院的奖的奖金后,他的父亲就不再反对他攻读数学了。
1725年约翰·伯努利的儿子丹尼尔·伯努利赴俄国,并向沙皇喀德林一世推荐了欧拉,这样,在1727年5月17日欧拉来到了彼得堡。1733年,年仅26岁的欧拉担任了彼得堡科学院数学教授。1735年,欧拉解决了一个天文学的难题(计算慧星轨道),这个问题经几个著名数学家几个月的努力才得到解决,而欧拉却用自己发明的方法,三天便完成了。然而过度的工作使他得了眼病,并且不幸右眼失明了,这时他才28岁。1741年欧拉应普鲁士彼德烈大帝的邀请,到柏林担任科学院物理数学所所长,直到1766年,后来在沙皇喀德林二世的诚恳敦聘下重回彼得堡,不料没有多久,左眼视力衰退,最后完全失明。不幸的事情接踵而来,1771年彼得堡的大火灾殃及欧拉住宅,带病而失明的64岁的欧拉被围困在大火中,虽然他被别人从火海中救了出来,但他的书房和大量研究成果全部化为灰烬了。
沉重的打击,仍然没有使欧拉倒下,他发誓要把损失夺回来。在他完全失明之前,还能朦胧地看见东西,他抓紧这最后的时刻,在一块大黑板上疾书他发现的公式,然后口述其内容,由他的学生特别是大儿子A·欧拉(数学家和物理学家)笔录。欧拉完全失明以后,仍然以惊人的毅力与黑暗搏斗,凭着记忆和心算进行研究,直到逝世,竟达17年之久。
欧拉的记忆力和心算能力是罕见的,他能够复述年青时代笔记的内容,心算并不限于简单的运算,高等数学一样可以用心算去完成。有一个例子足以说明他的本领,欧拉的两个学生把一个复杂的收敛级数的17项加起来,算到第50位数字,两人相差一个单位,欧拉为了确定究竟谁对,用心算进行全部运算,最后把错误找了出来。欧拉在失明的17年中;还解决了使牛顿头痛的月离问题和很多复杂的分析问题。
欧拉的风格是很高的,拉格朗日是稍后于欧拉的大数学家,从19岁起和欧拉通信,讨论等周问题的一般解法,这引起变分法的诞生。等周问题是欧拉多年来苦心考虑的问题,拉格朗日的解法,博得欧拉的热烈赞扬,1759年10月2日欧拉在回信中盛称拉格朗日的成就,并谦虚地压下自己在这方面较不成熟的作品暂不发表,使年青的拉格朗日的工作得以发表和流传,并赢得巨大的声誉。他晚年的时候,欧洲所有的数学家都把他当作老师,著名数学家拉普拉斯(Laplace)曾说过:"欧拉是我们的导师。" 欧拉充沛的精力保持到最后一刻,1783年9月18日下午,欧拉为了庆祝他计算气球上升定律的成功,请朋友们吃饭,那时天王星刚发现不久,欧拉写出了计算天王星轨道的要领,还和他的孙子逗笑,喝完茶后,突然疾病发作,烟斗从手中落下,口里喃喃地说:"我死了",欧拉终于"停止了生命和计算"。
欧拉的一生,是为数学发展而奋斗的一生,他那杰出的智慧,顽强的毅力,孜孜不倦的奋斗精神和高尚的科学道德,永远是值得我们学习的。〔欧拉还创设了许多数学符号,例如π(1736年),i(1777年),e(1748年),sin和cos(1748年),tg(1753年),△x(1755年),∑(1755年),f(x)(1734年)等。
4. 我们现在所用的直角坐标系,通常叫做笛卡儿直角坐标系。是从笛卡儿 (Descartes R.,1596.3.31~1650.2.11)引进了直角坐标系以后,人们才得以用代数的方法研究几何问题,才建立并完善了解析几何学,才建立了微积分。
法国数学家拉格朗日(Lagrange J.L.,1736.1.25~1813.4.10)曾经说过:"只要代数同几何分道扬镳,它们的进展就缓慢,它们的应用就狭窄。但是,当这两门科学结合成伴侣时,它们就互相吸取新鲜的活力。从那以后,就以快速的步伐走向完善。"
我国数学家华罗庚(1910.11.12~1985.6.12)说过:"数与形,本是相倚依,焉能分作两边飞。数缺形时少直觉,形少数时难入微。形数结合百般好,隔裂分家万事非。切莫忘,几何代数统一体,永远联系,切莫分离!"
这些伟人的话,实际上都是对笛卡儿的贡献的评价。
笛卡儿的坐标系不同于一个一般的定理,也不同于一段一般的数学理论,它是一种思想方法和技艺,它使整个数学发生了崭新的变化,它使笛卡儿成为了当之无愧的现代数学的创始人之一。
笛卡儿是十七世纪法国杰出的哲学家,是近代生物学的奠基人,是当时第一流的物理学家,并不是专业的数学家。
笛卡儿的父亲是一位律师。当他八岁的时候,他父亲把他送入了一所教会学校,他十六岁离开该校,后进入普瓦界大学学习,二十岁毕业后去巴黎当律师。他于1617年进入军队。在军队服役的九年中,他一直利用业余时间研究数学。后来他回到巴黎,为望远镜的威力所激动,闭门钻研光学仪器的理论与构造,同时研究哲学问题。他于1682年移居荷兰,得到较为安静自由的学术环境,在那里住了二十年,完成了他的许多重要著作,如《思想的指导法则》、《世界体系》、《更好地指导推理和寻求科学真理的方法论》(包括三个著名的附录:《几何》、《折光》和《陨星》),还有《哲学原理》和《音乐概要》等。其中《几何》这一附录,是笛卡儿写过的唯一本数学书,其中清楚地反映了他关于坐标几何和代数的思想。笛卡儿于1649年被邀请去瑞典作女皇的教师。斯德哥尔摩的严冬对笛卡儿虚弱的身体产生了极坏的影响,笛卡儿于1650年2月患了肺炎,得病十天便与世长辞了。他逝世于1650年2月11日,差一个月零三周没活到54岁。
笛卡儿虽然从小就喜欢数学,但他真正自信自己有数学才能并开始认真用心研究数学却是因为一次偶然的机缘。
那是1618年11月,笛卡儿在军队服役,驻扎在荷兰的一个小小的城填布莱达。一天,他在街上散步,看见一群人聚集在一张贴布告的招贴牌附近,情绪兴奋地议论纷纷。他好奇地走到跟前。但由于他听不懂荷兰话,也看不懂布告上的荷兰字,他就用法语向旁边的人打听。有一位能听懂法语的过路人不以为然的看了看这个年青的士兵,告诉他,这里贴的是一张解数学题的有奖竞赛。要想让他给翻译一下布告上所有的内容,需要有一个条件,就是士兵要给他送来这张布告上所有问题的答案。这位荷兰人自称,他是物理学、医学和数学教师别克曼。出乎意料的是,第二天,笛卡儿真地带着全部问题的答案见他来了;尤其是使别克曼吃惊地是,这位青年的法国士兵的全部答案竟然一点儿差错都没有。于是,二人成了好朋友,笛卡儿成了别克曼家的常客。
笛卡儿在别克曼指导下开始认真研究数学,别克曼还教笛卡儿学习荷兰语。这种情况一直延续了两年多,为笛卡儿以后创立解析几何打下了良好的基础。而且,据说别克曼教笛卡儿学会的荷兰话还救过笛卡儿一命:
有一次笛卡儿和他的仆人一起乘一艘不大的商船驶往法国,船费不很贵。没想到这是一艘海盗船,船长和他的副手以为笛卡儿主仆二人是法国人,不懂荷兰语,就用荷兰语商量杀害他们俩抢掠他们钱财的事。笛卡儿听懂了船长和他副手的话,悄悄做准备,终于制服了船长,才安全回到了法国。
在法国生活了若干年之后,他为了把自己对事物的见解用书面形式陈述出来,他又离开了带有宗教偏见和世俗的专制政体的法国,回到了可爱而好客的荷兰,甚至于和海盗的冲突也抹然不了他对荷兰的美好回忆。正是在荷兰,笛卡儿完成了他的《几何》。此著作不长,但堪称几何著作中的珍宝。
笛卡儿在斯德哥尔摩逝世十六年后,他的骨灰被转送回巴黎。开始时安放在巴维尔教堂,1667年被移放到法国伟人们的墓地--神圣的巴黎的保卫者们和名人的公墓。法国许多杰出的学者都在那里找到了自己最后的归宿。
5.高斯(C.F.Gauss,1777.4.30~1855.2.23)是德国数学家、物理学家和天文学家,出生于德国布伦兹维克的一个贫苦家庭。父亲格尔恰尔德·迪德里赫先后当过护堤工、泥瓦匠和园丁,第一个妻子和他生活了10多年后因病去世,没有为他留下孩子。迪德里赫后来娶了罗捷雅,第二年他们的孩子高斯出生了,这是他们唯一的孩子。父亲对高斯要求极为严厉,甚至有些过份,常常喜欢凭自己的经验为年幼的高斯规划人生。高斯尊重他的父亲,并且秉承了其父诚实、谨慎的性格。1806年迪德里赫逝世,此时高斯已经做出了许多划时代的成就。
在成长过程中,幼年的高斯主要是力于母亲和舅舅。高斯的外祖父是一位石匠,30岁那年死于肺结核,留下了两个孩子:高斯的母亲罗捷雅、舅舅弗利德里希(Friederich)。弗利德里希富有智慧,为人热情而又聪明能干投身于纺织贸易颇有成就。他发现姐姐的儿子聪明伶利,因此他就把一部分精力花在这位小天才身上,用生动活泼的方式开发高斯的智力。若干年后,已成年并成就显赫的高斯回想起舅舅为他所做的一切,深感对他成才之重要,他想到舅舅多产的思想,不无伤感地说,舅舅去世使“我们失去了一位天才”。正是由于弗利德里希慧眼识英才,经常劝导姐夫让孩子向学者方面发展,才使得高斯没有成为园丁或者泥瓦匠。
在数学史上,很少有人象高斯一样很幸运地有一位鼎力支持他成才的母亲。罗捷雅直到34岁才出嫁,生下高斯时已有35岁了。他性格坚强、聪明贤慧、富有幽默感。高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出,这已经超出了一个孩子能被许可的范围。当丈夫为此训斥孩子时,他总是支持高斯,坚决反对顽固的丈夫想把儿子变得跟他一样无知。
罗捷雅真诚地希望儿子能干出一番伟大的事业,对高斯的才华极为珍视。然而,他也不敢轻易地让儿子投入当时尚不能养家糊口的数学研究中。在高斯19岁那年,尽管他已做出了许多伟大的数学成就,但她仍向数学界的朋友W.波尔约(W.Bolyai,非欧几何创立者之一J.波尔约之父)问道:高斯将来会有出息吗?W.波尔约说她的儿子将是“欧洲最伟大的数学家”,为此她激动得热泪盈眶。
7岁那年,高斯第一次上学了。头两年没有什么特殊的事情。1787年高斯10岁,他进入了学习数学的班次,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。数学教师是布特纳(Buttner),他对高斯的成长也起了一定作用。
在全世界广为流传的一则故事说,高斯10岁时算出布特纳给学生们出的将1到100的所有整数加起来的算术题,布特纳刚叙述完题目,高斯就算出了正确答案。不过,这很可能是一个不真实的传说。据对高斯素有研究的著名数学史家E·T·贝尔(E.T.Bell)考证,布特纳当时给孩子们出的是一道更难的加法题:81297+81495+81693+…+100899。
当然,这也是一个等差数列的求和问题(公差为198,项数为100)。当布特纳刚一写完时,高斯也算完并把写有答案的小石板交了上去。E·T·贝尔写道,高斯晚年经常喜欢向人们谈论这件事,说当时只有他写的答案是正确的,而其他的孩子们都错了。高斯没有明确地讲过,他是用什么方法那么快就解决了这个问题。数学史家们倾向于认为,高斯当时已掌握了等差数列求和的方法。一位年仅10岁的孩子,能独立发现这一数学方法实属很不平常。贝尔根据高斯本人晚年的说法而叙述的史实,应该是比较可信的。而且,这更能反映高斯从小就注意把握更本质的数学方法这一特点。
高斯的计算能力,更主要地是高斯独到的数学方法、非同一般的创造力,使布特纳对他刮目相看。他特意从汉堡买了最好的算术书送给高斯,说:“你已经超过了我,我没有什么东西可以教你了。”接着,高斯与布特纳的助手巴特尔斯(J.M.Bartels)建立了真诚的友谊,直到巴特尔斯逝世。他们一起学习,互相帮助,高斯由此开始了真正的数学研究。
1788年,11岁的高斯进入了文科学校,他在新的学校里,所有的功课都极好,特别是古典文学、数学尤为突出。经过巴特尔斯等人的引荐,布伦兹维克公爵召见了14岁的高斯。这位朴实、聪明但家境贫寒的孩子赢得了公爵的同情,公爵慷慨地提出愿意作高斯的资助人,让他继续学习。
布伦兹维克公爵在高斯的成才过程中起了举足轻重的作用。不仅如此,这种作用实际上反映了欧洲近代科学发展的一种模式,表明在科学研究社会化以前,私人的资助是科学发展的重要推动因素之一。高斯正处于私人资助科学研究与科学研究社会化的转变时期。
1792年,高斯进入布伦兹维克的卡罗琳学院继续学习。1795年,公爵又为他支付各种费用,送他入德国著名的哥丁根大学,这样就使得高斯得以按照自己的理想,勤奋地学习和开始进行创造性的研究。1799年,高斯完成了博士论文,回到家乡布伦兹维克,正当他为自己的前途、生计担忧而病倒时----虽然他的博士论文顺利通过了,已被授予博士学位,同时获得了讲师职位,但他没有能成功地吸引学生,因此只能回老家,又是公爵伸手救援他。公爵为高斯付诸了长篇博士论文的印刷费用,送给他一幢公寓,又为他印刷了《算术研究》,使该书得以在1801年问世;还负担了高斯的所有生活费用。所有这一切,令高斯十分感动。他在博士论文和《算术研究》中,写下了情真意切的献词:“献给大公”,“你的仁慈,将我从所有烦恼中解放出来,使我能从事这种独特的研究”。
1806年,公爵在抵抗拿破仑统帅的法军时不幸阵亡,这给高斯以沉重打击。他悲痛欲绝,长时间对法国人有一种深深的敌意。大公的去世给高斯带来了经济上的拮据,德国处于法军奴役下的不幸,以及第一个妻子的逝世,这一切使得高斯有些心灰意冷,但他是位刚强的汉子,从不向他人透露自己的窘况,也不让朋友安慰自己的不幸。人们只是在19世纪整理他的未公布于众的数学手稿时才得知他那时的心态。在一篇讨论椭圆函数的手搞中,突然插入了一段细微的铅笔字:“对我来说,死去也比这样的生活更好受些。”
慷慨、仁慈的资助人去世了,因此高斯必须找一份合适的工作,以维持一家人的生计。由于高斯在天文学、数学方面的杰出工作,他的名声从1802年起就已开始传遍欧洲。彼得堡科学院不断暗示他,自从1783年欧拉去世后,欧拉在彼得堡科学院的位置一直在等待着象高斯这样的天才。公爵在世时坚决劝阻高斯去俄国,他甚至愿意给高斯增加薪金,为他建立天文台。现在,高斯又在他的生活中面临着新的选择。
为了不使德国失去最伟大的天才,德国著名学者洪堡(B.A.Von Humboldt)联合其他学者和政界人物,为高斯争取到了享有特权的哥丁根大学数学和天文学教授,以及哥丁根天文台台长的职位。1807年,高斯赴哥丁根就职,全家迁居于此。从这时起,除了一次到柏林去参加科学会议以外,他一直住在哥丁根。洪堡等人的努力,不仅使得高斯一家人有了舒适的生活环境,高斯本人可以充分发挥其天才,而且为哥丁根数学学派的创立、德国成为世界科学中心和数学中心创造了条件。同时,这也标志着科学研究社会化的一个良好开端。
高斯的学术地位,历来为人们推崇得很高。他有“数学王子”、“数学家之王”的美称、被认为是人类有史以来“最伟大的三位(或四位)数学家之一”(阿基米德、牛顿、高斯或加上欧拉)。人们还称赞高斯是“人类的骄傲”。天才、早熟、高产、创造力不衰、……,人类智力领域的几乎所有褒奖之词,对于高斯都不过份。
高斯的研究领域,遍及纯粹数学和应用数学的各个领域,并且开辟了许多新的数学领域,从最抽象的代数数论到内蕴几何学,都留下了他的足迹。从研究风格、方法乃至所取得的具体成就方面,他都是18----19世纪之交的中坚人物。如果我们把18世纪的数学家想象为一系列的高山峻岭,那么最后一个令人肃然起敬的巅峰就是高斯;如果把19世纪的数学家想象为一条条江河,那么其源头就是高斯。
虽然数学研究、科学工作在18世纪末仍然没有成为令人羡慕的职业,但高斯依然生逢其时,因为在他快步入而立之年之际,欧洲资本主义的发展,使各国政府都开始重视科学研究。随着拿破仑对法国科学家、科学研究的重视,俄国的沙皇以及欧洲的许多君主也开始对科学家、科学研究刮目相看,科学研究的社会化进程不断加快,科学的地位不断提高。作为当时最伟大的科学家,高斯获得了不少的荣誉,许多世界著名的科学泰斗都把高斯当作自己的老师。
1802年,高斯被俄国彼得堡科学院选为通讯院士、喀山大学教授;1877年,丹麦政府任命他为科学顾问,这一年,德国汉诺威政府也聘请他担任政府科学顾问。
高斯的一生,是典型的学者的一生。他始终保持着农家的俭朴,使人难以想象他是一位大教授,世界上最伟大的数学家。他先后结过两次婚,几个孩子曾使他颇为恼火。不过,这些对他的科学创造影响不太大。在获得崇高声誉、德国数学开始主宰世界之时,一代天骄走完了生命旅程。
6.毕达哥拉斯(Pythagoras,572BC?~497BC?),古希腊数学家、哲学家。
毕达哥拉斯和他的学派在数学上有很多创造,尤其对整数的变化规律感兴趣。例如,把(除其本身以外)全部因数之和等于本身的数称为完全数(如6,28,496等),而将本身大于其因数之和的数称为盈数;将小于其因数之和的数称为亏数。他们还发现了“直角三角形两直角边平方和等于斜边平方”,西方人称之为毕达哥拉斯定理,我国称为勾股定理。
在几何学方面,毕达哥拉斯学派证明了“三角形内角之和等于两个直角”的论断;研究了黄金分割;发现了正五角形和相似多边形的作法;还证明了正多面体只有五种——正四面体、正六面体、正八面体、正十二面体和正二十面体。
7.钱学森1911年出生在上海市,1934年毕业于上海交通大学。他为了更好地报效祖国,于1935年考取美国麻省理工学院进行深造学习,并于1936年转入加州理工学院继续学习,并拜著名的航空科学家冯·卡门为师,学习航空工程理论。钱学森学习十分努力,三年后便获得了博士学位并留校任教。在冯·卡门的指导下,钱学森对火箭技术产生了浓厚的兴趣,并在高速空气动力学和喷气推进研究领域中突飞猛进。不久,经冯·卡门的推荐,钱学森成了加州理工学院最年轻的终身教授。
从1935年到1950年的15年间,钱学森在学术上取得了巨大的成就,生活上享有丰厚的待遇,但是他始终想念着自己的祖国。
1950年朝鲜战争爆发,钱学森想回国报效祖国的愿望落空了,钱学森因为是中国人而遭到了迫害。直到1955年6月,钱学森写信给当时的全国人大常委会副委员长陈叔通同志,请求党和政府帮助他早日回到祖国的怀抱。周总理得知后非常重视此事,并指示有关人员在适当时机办理此事。经过努力,1955年10月18日,钱学森一家人终于回到阔别20年的祖国。不久,他便被任命为中国科学院力学研究所所长。
为了提高我国的国防能力,保卫我们国家的安全,1956年10月8日,我国第一个导弹研究机构――国防部第五研究院成立,钱学森被任命为第一任院长。在钱学森的指导下,经过艰苦的努力,1960年10月,我国第一枚国产导弹终于制造成功。
字数限制,打不下了 ,自己看吧
霍金的资料
世界十大数学家
1、阿基米德 阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、百科式科学家、数学家、物理学家、力学家,静态力学和流体静力学的奠基人,并且享有“力学之父”的美称,阿基米德和高斯、牛顿并列为世界三大数学家。阿基米德曾说过:“给我一个支点,我就能撬起整个地球。”阿基米德确立了静力学和流体静力学的基本原理。给出许多求几何图形重心,包括由一抛物线和其网平行弦线所围成图形的重心的方法。
2、卡尔·弗里德里希·高斯 约翰·卡尔·弗里德里希·高斯(Johann Carl Friedrich Gauss ,1777年4月30日-1855年2月23日,享年77岁),犹太人,德国著名数学家、物理学家、天文学家、大地测量学家,近代数学奠基者之一。高斯被认为是历史上最重要的数学家之一,并享有“数学王子”之称。高斯和阿基米德、牛顿、欧拉并列为世界四大数学家。一生成就极为丰硕,以他名字“高斯”命名的成果达110个,属数学家中之最。
3、艾萨克·牛顿 艾萨克·牛顿(1643年1月4日—1727年3月31日)爵士,英国皇家学会会长,英国著名的物理学家,百科全书式的“全才”,著有《自然哲学的数学原理》、《光学》。他在1687年发表的论文《自然定律》里,对万有引力和三大运动定律进行了描述。这些描述奠定了此后三个世纪里物理世界的科学观点,并成为了现代工程学的基础。他通过论证开普勒行星运动定律与他的引力理论间的一致性,展示了地面物体与天体的运动都遵循着相同的自然定律;为太阳中心说提供了强有力的理论支持,并推动了科学革命。
4、莱昂哈德·欧拉 莱昂哈德·欧拉(Leonhard Euler ,1707年4月15日~1783年9月18日),瑞士数学家、自然科学家。1707年4月15日出生于瑞士的巴塞尔,1783年9月18日于俄国圣彼得堡去世。欧拉出生于牧师家庭,自幼受父亲的影响。13岁时入读巴塞尔大学,15岁大学毕业,16岁获得硕士学位。欧拉是18世纪数学界最杰出的人物之一,他不但为数学界作出贡献,更把整个数学推至物理的领域。他是数学史上最多产的数学家,平均每年写出八百多页的论文,还写了大量的力学、分析学、几何学、变分法等的课本,《无穷小分析引论》、《微分学原理》、《积分学原理》等都成为数学界中的经典著作。
5、欧几里得 欧几里得(英文:Euclid;希腊文:Ευκλειδη? ,公元前330年—公元前275年),古希腊人,数学家。他活跃于托勒密一世(公元前364年-公元前283年)时期的亚历山大里亚,被称为“几何之父”,他最著名的著作《几何原本》是欧洲数学的基础,提出五大公设,欧几里得几何,被广泛的认为是历史上最成功的教科书。欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品。
6、亨利·庞加莱 亨利·庞加莱(Jules Henri Poincaré)是法国数学家、天体力学家、数学物理学家、科学哲学家,1854年4月29日生于法国南锡,1912年7月17日卒于巴黎。庞加莱的研究涉及数论、代数学、几何学、拓扑学、天体力学、数学物理、多复变函数论、科学哲学等许多领域。他被公认是19世纪后四分之一和二十世纪初的领袖数学家,是对于数学和它的应用具有全面知识的最后一个人。
7、波恩哈德·黎曼 波恩哈德·黎曼(公元1826—1866年),是德国著名的数学家,他在数学分析和微分几何方面作出过重要贡献,他开创了黎曼几何,并且给后来爱因斯坦的广义相对论提供了数学基础。2018年9月,迈克尔·阿蒂亚声明证明黎曼猜想,9月24日,迈克尔·阿蒂亚贴出了他证明黎曼假设(猜想)的预印本。
8、艾伦·麦席森·图灵 艾伦·麦席森·图灵(Alan Mathison Turing,1912年6月23日-1954年6月7日),英国数学家、逻辑学家,被称为计算机科学之父,人工智能之父。图灵对于人工智能的发展有诸多贡献,提出了一种用于判定机器是否具有智能的试验方法,即图灵试验,至今,每年都有试验的比赛。此外,图灵提出的著名的图灵机模型为现代计算机的逻辑工作方式奠定了基础。
9、埃瓦里斯特·伽罗瓦 埃瓦里斯特·伽罗瓦,1811年10月25日生,法国数学家。现代数学中的分支学科群论的创立者。用群论彻底解决了根式求解代数方程的问题,而且由此发展了一整套关于群和域的理论,人们称之为伽罗瓦群和伽罗瓦理论。在世时在数学上研究成果的重要意义没被人们所认识,曾呈送科学院3篇学术论文,均被退回或遗失。后转向政治,支持共和党,曾两次被捕。21岁时死于一次决斗。
10、格奥尔格·康托尔 格奥尔格·康托尔(Cantor,Georg Ferdinand Ludwig Philipp,1845.3.3-1918.1.6)德国数学家,集合论的创始人。生于俄国列宁格勒(今俄罗斯圣彼得堡)。父亲是犹太血统的丹麦商人,母亲出身艺术世家。1856年全家迁居德国的法兰克福。先在一所中学,后在威斯巴登的一所大学预科学校学习。康托尔爱好广泛,极有个性,终身信奉宗教。早期在数学方面的兴趣是数论,1870年开始研究三角级数并由此导致19世纪末、20世纪初最伟大的数学成就——集合论和超穷数理论的建立。除此之外,他还努力探讨在新理论创立过程中所涉及的数理哲学问题.1888-1893年康托尔任柏林数学会第一任会长,1890年领导创立德国数学家联合会并任首届主席。
数学资料
史蒂芬·威廉·霍金(英文名Stephen William Hawking) ,1942年1月8日在英国牛津出生[1],当天正是伽利略逝世300年忌日。人称“宇宙之王”。曾先后毕业于牛津大学和剑桥大学,并获剑桥大学哲学博士学位。他之所以在轮椅上坐了46年,是因为他在21岁时就不幸患上了会使肌肉萎缩的卢伽雷氏症,演讲和问答只能通过语音合成器来完成。他是英国剑桥大学应用数学及理论物理学系教授,当代最重要的广义相对论和宇宙论家,是本世纪享有国际盛誉的伟人之一,被称为在世的最伟大的科学家,还被称为“宇宙之王”。1942年1月8日生于英国牛津的霍金刚好出生于伽利略逝世300周年纪念日之时。70年代他与彭罗斯一起证明了著名的奇性定理,为此他们共同获得了1988年的沃尔夫物理奖。他因此被誉为继爱因斯坦之后世界上最著名的科学思想家和最杰出的理论物理学家。他还证明了黑洞的面积定理,即随着时间的增加黑洞的面积不减。这很自然使人将黑洞的面积和热力学的熵联系在一起。1973年,他考虑黑洞附近的量子效应,发现黑洞会像黑体一样发出辐射,其辐射的温度和黑洞质量成反比,这样黑洞就会因为辐射而慢慢变小,而温度却越变越高,它以最后一刻的爆炸而告终。黑洞辐射的发现具有极其基本的意义,它将引力、量子力学和统计力学统一在一起。
1974年以后,他的研究转向量子引力论。虽然人们还没有得到一个成功的理论,但它的一些特征已被发现。例如,空间-时间在普郎克尺度(10^-33厘米)下不是平坦的,而是处于一种泡沫的状态。在量子引力中不存在纯态,因果性受到破坏,因此使不可知性从经典统计物理、量子统计物理提高到了量子引力的第三个层次。
1980年以后,他的兴趣转向量子宇宙论。
2004年7月,霍金修正了自己原来的“黑洞悖论”观点,信息应该守恒。
本书的副题是从大爆炸到黑洞。霍金认为他一生的贡献是,在经典物理的框架里,证明了黑洞和大爆炸奇点的不可避免性,黑洞越变越大;但在量子物理的框架里,他指出,黑洞因辐射而越变越小,大爆炸的奇点不但被量子效应所抹平,而且整个宇宙正是起始于此。
理论物理学的细节在未来的20年中还会有变化,但就观念而言,现在已经相当完备了。
霍金的生平是非常富有传奇性的,在科学成就上,他是有史以来最杰出的科学家之一,他的贡献是在他20年之久被卢伽雷病禁锢在轮椅上的情况下做出的,这真正是空前的。因为他的贡献对于人类的观念有深远的影响,所以媒介早已有许多关于他如何与全身瘫痪作搏斗的描述。所以说,上帝对每个人都是很公平的。他有身体上的缺陷,可头脑聪明的很!尽管如此,译者(吴忠超)之一于1979年第一回见到他时的情景至今还历历在目。那是第一次参加剑桥霍金广义相对论小组的讨论班时,门打开后,忽然脑后响起一种非常微弱的电器的声音,回头一看,只见一个骨瘦如柴的人斜躺在电动轮椅上,他自己驱动着电开关。译者尽量保持礼貌而不显出过分吃惊,但是他对首次见到他的人对其残废程度的吃惊早已习惯。他要用很大努力才能举起头来。在失声之前,只能用非常微弱的变形的语言交谈,这种语言只有在陪他工作、生活几个月后才能通晓。他不能写字,看书必须依赖于一种翻书页的机器,读文献时必须让人将每一页摊平在一张大办公桌上,然后他驱动轮椅如蚕吃桑叶般地逐页阅读。人们不得不对人类中居然有以这般坚强意志追求终极真理的灵魂从内心产生深深的敬意。从他对译者私事的帮助可以体会到,他是一位富有人情味的人。每天他必须驱动轮椅从他的家——剑桥西路5号,经过美丽的剑河、古老的国王学院驶到银街的应用数学和理论物理系的办公室。该系为了他的轮椅行走便利特地修了一段斜坡。
本书译者之一曾受教于霍金达四年之久,并在他的指导下完成了博士论文。此书即是受霍金之托而译成中文,以供占人类五分之一的人口了解他的学说。
他还证明了黑洞的面积定理。在富有学术传统的剑桥大学,他担任的职务是剑桥大学有史以来最为崇高的教授职务,那是牛顿和狄拉克担任过的卢卡逊数学教授。他拥有几个荣誉学位,是英国皇家学会会员。在公众评价中,被誉为是继阿尔伯特·爱因斯坦之后最杰出的理论物理学家之一。他提出宇宙大爆炸自奇点开始,时间由此刻开始,黑洞最终会蒸发,在统一20世纪物理学的两大基础理论——爱因斯坦的相对论和普朗克的量子论方面走出了重要一步。
他因患“渐冻症”(肌肉萎缩性侧索硬化症 卢伽雷氏症),禁锢在一把轮椅上达40年之久,他却身残志不残,使之化为优势,克服了残废之患而成为国际物理界的超新星。他不能写,甚至口齿不清,但他超越了相对论、量子力学、大爆炸等理论而迈入创造宇宙的“几何之舞”。尽管他那么无助地坐在轮椅上,他的思想却出色地遨游到广袤的时空,解开了宇宙之谜。
霍金的魅力不仅在于他是一个充满传奇色彩的物理天才,也因为他是一个令人折服的生活强者。他不断求索的科学精神和勇敢顽强的人格力量深深地吸引了每一个知道他的人。患有肌肉萎缩性侧索硬化症的他,近乎全身瘫痪,不能发音,但1988年仍出版《时间简史》,至今已出售逾1000万册,成为全球最畅销的科普著作之一。
他被世人誉为“在世的最伟大的科学家”“另一个爱因斯坦”“不折不扣的生活强者”“敢于向命运挑战的人”。
早期
霍金1942年出生于英国牛津,出生当天正好是伽利略逝世300年忌日,父亲法兰克是毕业于牛津大学的热带病专家,母亲伊莎贝尔1930年代于牛津研究哲学、政治和经济。
1942年1月,纳粹德军轰滥炸英格兰,伦敦遭受几乎夜夜不停的空袭。这迫使霍金一家搬离海格特的家园,迁到牛津避难。他们在霍金诞生后又回到了伦敦。童年时的霍金,学业成绩并不突出,但喜欢设计极为复杂的玩具,据说他们曾做出一台简单的电脑。
1959年,17岁的霍金入读牛津大学的大学学院攻读自然科学,自称用了很少时间而得到一等荣誉学位,随后转读剑桥大学研究宇宙学,1963年被诊断患有肌肉萎缩性侧索硬化症,即运动神经病,当时医生诊断他只能活两年,他虽然活下来,但在往后数十年逐渐全身瘫痪并失去了说话能力。
霍金曾澄清自己当时并无酗酒,只感到自己有“悲剧性格”,并使自己沉醉于瓦格纳的音乐里。直至他遇上了首任妻子珍·王尔德(Jane Wilde),两人结婚后育有3名子女。23岁时,他取得了博士学位,留在剑桥大学进行研究工作。
相关作品
《时间简史续编》 是宇宙学无可争议的权威,霍金的研究成就和生平一直吸引着广大的读者,《时间简史续篇》是为想更多了解霍金教授生命及其学说的读者而编的。该书以睿智真挚的私人访谈形式,叙述了霍金教授
《时间简史》的生平历程和研究工作,展现了在巨大的理论架构后面真实的人性。该书本来就不是一部寻常的口述历史,而是对二十世纪人类最伟大的头脑之一的极为感人又迷人的画像和描述。对于非专业读者,本书无疑是他们绞尽脑汁都无法真正理解的,只能当科幻小说看。《霍金讲演录——黑洞、婴儿宇宙及其他》,是由霍金1976-1992年间所写文章和演讲稿共13篇结集而成。讨论了虚拟空间、有黑洞引起的婴儿宇宙的诞生以及科学家寻求完全统一理论的努力,并对自由意志、生活价值和人的生存方式及进化原理作出了独到的见解。
《时空本性》80年前广义相对论就以完整的数学形式表达出来,量子(他个人认为这只是研究理论物理目前的最小单位)理论的基本原理在70年前也已出现,然而这两种整个物理学中最精确、最成功的理论能被统一在单独的量子引力中吗?世界上最著名的两位物理学家就此问题展开一场极端与极端的辩论。本书是基于霍金和彭罗斯在剑桥大学的6次演讲和最后辩论而成。
《未来的魅力》本书以史蒂芬·威廉·霍金预测宇宙今后十亿年前景开头,以唐·库比特最后的审判的领悟为结尾,介绍了预言的发展历程,及我们今天预测未来的方法。该书文字通俗易懂,作者在阐述自己观点的同时,还穿插解答了一些饶有有趣的问题。
《果壳中的宇宙》该书是霍金教授继《时间简史》后最重要的著作。霍金教授在这本书中,再次把我们带到理论物理的最前沿,在霍金教授的世界里,真理和幻想有时只是一线之差。霍金教授用通俗的语言解释提示我们对宇宙的展开充分的想象,并以他独特的热情,邀请我们一起展开一场非凡的时空之旅。《时间简史——从宇宙空间大爆炸到黑洞》(1988年撰写)这本书是霍金的代表作。作者想象丰富,构思奇妙,语言优美,字字珠玑,更让人咋惊,"世界"之外,未来之变,是这样的神奇和美妙。这本书至今累计发行量已达2500万册,被译成近40种语言。
在这本书中,霍金将试图勾勒出我们心目中的宇宙历史——从大爆炸到黑洞,并有机结合各类宗教学理论。在第一讲里,他将简要地回顾过去关于宇宙的构想,并说明我们是如何得到目前的图像的。这或许可以称之为宇宙史的历史。
第二讲将解释牛顿和爱因斯坦的两种引力理论何以得出这样的结论——宇宙不可能是绝对静止的,它不得不或是膨胀,或是收缩。而这又意味着,在前200亿年到前100亿年之间,必定有某一时刻,那时宇宙的密度为无穷大或是脱离了某个空间,这就产生了所谓的大爆炸。它极可能就是宇宙的开端。
第三讲将谈谈黑洞。黑洞是当某个巨大的星球,或者更大的天体,受其自身引力吸引而自行塌缩(塌陷并紧缩)时形成的(另一种猜测:黑洞是脱离了某个集合空间中的某一元素)。综合感性的哲学理论,“任何事物在时间和空间的洗礼下必将从一个极端走向另一个极端”,这可能正是白洞产生的原因。根据爱因斯坦的广义及狭义相对论,宇宙中可能存在无数黑(白)洞,(也可能我们存在的世界正是黑(白)洞的某一分支)。而有关他们的历史,可能是某一领域的终结,也或许只是一个新的开始,因为知识领略得越多,越发现自己知道的只不过是冰山一角。广(狭)义相对论是经典理论(因为这个世界不存在绝对的理想状态),包括量子力学的不确定原理。
第四讲将讲述量子力学如何允许能量从黑洞泄漏出来。黑(白)洞并不像人们所描绘的那样可怕。
第五讲将把量子力学思想应用于大爆炸和宇宙的起源。这就得出了这样的设想:时空可能在范围(维)上有限,但没有边缘。这或许类似于地球表面,但它多了两维。
第六讲将说明这个新的边界条件如何能用现有的知识结构解释这个问题:尽管物理学定律是时(空)间对称的,但根据化学理论中的微观粒子守恒,任何物质(包括真空状态等),即使是“最”稳定的,也会在本质上发生“相对微小”的变化(具体解释请见化学领域的微观粒子(带电粒子的绕核“行星”运转)。
最后,第七讲将讲述我们正如何试图找寻一种统一的理论,如何能把involve量子力学、引力(etc.)的物理学及其他学科(“包括”很智慧地谈到“人”有不灭灵魂的宗教学)真正大一统地联系成一“片”知识的“海洋”。如果我们做到了这一点,我们也许就能真正理解了宇宙(involve natural power),以及我们在其中的位置。
该书不是一部寻常的口述历史,而是对二十世纪人类最伟大的头脑之一的极为interesting的theories和discriptions。对于非专业读者,本书无疑是他们享受人类文明成果的机会和滋生宝贵灵感的源泉。《霍金讲演录——黑洞、婴儿宇宙及其他》,是
史蒂芬·霍金与第一任妻子珍·王尔德由霍金1976—1992年间所写文章和演讲稿共13篇结集而成。讨论了虚时(空)间、有黑(白)洞引起的初始宇宙,维的诞生以及科学家寻求完全统一理论的努力,并对自由意志、生活价值和死亡作出了独到的见解。在三年工作量并不巨大的学习之后,他获得了一等自然科学荣誉学位,之后进入剑桥大学研究宇宙学,当时牛津大学还没有宇宙学这个专业,于是他试图努力开创。尽管他希望能够跟当时在剑桥的弗雷德·霍伊尔(Fred Hoyle)身边做研究,但是他的导师却是丹尼斯·西艾玛(Dens Scama)。在获得博士学位之后,他成为一名研究员,后来成为冈维尔和凯厄斯学院(Gonvlle and Caius College)的教授。
1992年耗资350万英镑的同名**问世。霍金坚信关于宇宙的起源和生命的基本理念可以不用数学来表达,世人应当可以通过**——这一视听媒介来了解他那深奥莫测的学说。本书是关于探索时间本质和宇宙最前沿的通俗读物,是一本当代有关宇宙科学思想最重要的经典著做,它改变了人类对宇宙的观念。《时间简史》作为宇宙学无可争议的权威,霍金的研究成就和生平一直吸引着广大的读者,《时间简史续编》是为向更多了解霍金教授生命及其学说的读者而编的。该书以坦白真挚的私人访谈形式,叙述了霍金教授的生平历程和研究工作,展现了在巨大的理论架构后面真实的“人”。
《乔治开启宇宙的秘密钥匙》中文版发行于2008年年初,这本书由史蒂芬·霍金、其女儿露西·霍金、其学生克里斯托弗·加尔法德所著,是史蒂芬·霍金的“儿童”时期“科普三部曲”之一,这本书当中论黑洞以及很多部分都简述了霍金的新想法,这本书在国内外好评如潮。
2004年-霍金悖论与信息守恒
2004年7月21日,在爱尔兰都柏林举行的“第17届国际广义相对论和万有引力大会”上,霍金的态度来了个180度转弯,表示自己原来的观点错了,信息应该守恒。宣布了他对宇宙黑洞的最新研究结果:黑洞并非如他和其他大多数物理学家以前认为的那样,对其周遭的一切“完全吞食”,事实上被吸入黑洞深处的物质的某些信息实际上可能会在某个时候释放出来:信息守恒。原因是先前把黑洞想得太理想化了,把黑洞热辐射也想得太理想化了。不过,霍金一直没有给出严格的证明来支持自己的新观点。索恩表示此事不能由霍金一个人说了算,他仍坚持信息不守恒的看法。普瑞斯基则表示没有听懂霍金的演讲,不明白自己为什么赢了。目前,这一牵扯到量子论基础的敏感问题还远未解决。
黑洞理论的研究已经超出了黑洞本身,它不仅通过信息疑难触及了量子论的重要基石——幺正性,而且掀开了探讨时间性质的新篇章。
20世纪60年代到80年代,黑洞研究取得了重大进展。最初人们认为黑洞是一颗死亡了的星体,什么东西都可以掉进去,但任何东西都跑不出来。1974年霍金证明黑洞有温度、有辐射。霍金辐射的发现使黑洞和霍金本人都变得家喻户晓。
20世纪80年代以后,黑洞研究的重点逐渐从温度转向信息佯谬。人们早已知道,黑洞外部观测者会失去形成黑洞以及后来落入黑洞的物质的几乎全部信息,这就是“无毛定理”。著名的“霍金辐射”理论.所谓“毛”是指“信息”。黑洞只剩下总质量、总电荷和总角动量3根“毛”可以被外界探知。人们最初认为,虽然外部观测者不能探知黑洞内部物质的信息,但这些信息并没有从宇宙中消失,只不过隐藏在了黑洞的内部。霍金辐射发现之后,人们知道黑洞中的物质最后将全部转化为热辐射,而热辐射几乎不带出任何信息。这样,形成和落入黑洞的物质的信息将从宇宙中消失,信息不再守恒,不仅重子数守恒、轻子数守恒等定律不再成立,量子论的幺正性也将受到破坏。面对如此严重的理论困难,物理学家展开了激烈的争论。理论物理学家大都相信信息守恒,坚信幺正性这一量子论的基石不会被破坏。总之,信息应该守恒。以霍金和索恩为代表的相对论专家则认为信息不一定守恒,幺正性完全有可能被破坏。为此,霍金和索恩与坚信信息守恒的普瑞斯基打赌。
"这种理论从诞生之初就遇到了麻烦:它同很多科学家坚持的"信息守恒定律"互为矛盾.这一度被人们称为"黑洞悖论".
如同19世纪的科学家断定了能量守恒定律一样,20世纪的许多科学家提出了信息守恒一说——假如这个说法成立,那么"信息守恒定律"无疑将成为科学界最为重要的定律,也许比物质,能量守恒定律的意义更为深远.霍金的黑洞理论引起的激烈争执就是"信息"在黑洞中是否能够保存,守恒."
霍金生平
1942年1月8日出生于英国的牛津。
1950年 举家迁往圣奥尔本斯
1959年 入英国牛津大学
1962年 在牛津大学完成物理学学位课程,搬到剑桥大学攻读研究生,
1963年 霍金被诊断患有运动神经元疾病。
1965年 进入剑桥大学冈维尔和凯厄斯学院任研究员,被授予博士学位。他的研究表明:用来解释黑洞崩溃的数学方程式,也可以解释从一个点开始膨胀的宇宙。/与珍.王尔德(简·王尔德)结婚
1967年 长子罗伯特出生
1969年 起任冈维尔和凯厄斯学院科学杰出成就研究员
1970年 霍金研究黑洞的特性。他预言,来自黑洞(现在叫霍金辐射)的射线辐射及黑洞的表面积永远也不会减少。/女儿露西出生/开始使用轮椅
1973年 首部著作《空时的大型结构》出版
1974年 被选为英国皇家学会会员。他继续证明,黑洞有温度,黑洞发出热辐射,以及气化导致质量减少。
1975—1976年间 获得伦敦皇家天文学会的埃丁顿勋章、梵蒂冈教皇科学学会十一世勋章、霍普金斯奖、美国丹尼欧海涅曼奖、马克斯韦奖和英国皇家学会的休斯勋章6项大奖
1977年 被任命为剑桥大学引力物理学教授
1978年 获世界理论物理研究的最高奖爱因斯坦奖
1979年 次子蒂莫西出生/《广义相对论评述:纪念爱因斯坦百年诞辰》出版
1980年 任剑桥大学数学鲁卡斯教授(艾萨克·牛顿曾任此职)。
1981年 参加梵蒂冈宇宙学大会,宣布无边界构想/《超时空和超引力》出版/被授予大英帝国高级骑士
1985年 在瑞士病倒/实行气管造口手术从而失去语言能力,使用带造音器的计算机。
1988年 出版《时间简史》,获沃尔夫基金奖,成为关于量子物理学与相对论最畅销的书。
1989年 被授予大英帝国荣誉爵士
1990年 与结婚25年之久的妻子简·怀尔德离婚。
1991年 《时间简史》同名**上映
1993年 《“黑洞与婴儿宇宙”及其他论文》出版
1995年 9月16日,与他的护士伊莱恩·梅森结婚
1996年 至今继续在剑桥大学工作。
2001年 10月又一部力作《果壳中的宇宙》出版发行
2004年7月,霍金修正了自己原来的“黑洞悖论”观点错了,信息应该守恒。7月21日,在爱尔兰都柏林举行的“第17届国际广义相对论和万有引力大会”上。
2006年,霍金第三次来中国,他带来的仍然是自己关于宇宙学最新的研究,在香港科技大学体育馆主持一个题为「宇宙的起源」的演讲;在人民大会堂向北京的公众讲述《宇宙的起源》。
2007年 霍金与露西吉高佛尔德合著的儿童科幻小说《乔治通往宇宙的秘密钥匙》于9月6日率先在法国出版发行。这本书是霍金写的第一本儿童读物,霍金在书中向儿童解释了自己关于时间和宇宙方面的学说。
2009年8月12日 获得自由勋章
获得奖项
1、 1989年获得英国爵士荣誉称号
2、 是英国皇家学会学员和美国科学院外籍院士
3、 伦敦皇家天文学会的埃丁顿勋章
4、 梵蒂冈教皇科学学会十一世勋章
5、 霍普金斯奖
6、 美国丹尼欧海涅曼奖
7、 麦克斯韦奖
8、 英国皇家学会的休斯勋章
9、 1978年获物理界最有威望的大奖—阿尔伯特·爱因斯坦奖
10、与罗杰·彭罗斯共同获得了1988年的沃尔夫物理奖
11、1988年霍金的书《时间简史:从大爆炸到黑洞》获沃尔夫基金奖
12、2009年8月12日,获得自由勋章
霍金名言
1.当你面临着夭折的可能性,你就会意识到,生命是宝贵的,你有大量的事情要做。
2.是先有鸡,还是先有蛋?
3.宇宙有开端吗?如果有的话,在此之前发生过什么?
4.宇宙从何处来,又往何处去?
5.活着就有希望。
6.时间有没有尽头?
7.我注意过,即使是那些声称“一切都是命中注定的,而且我们无力改变”的人,在过马路前都会左右看。
8.科学家和娼妓都是做他们喜欢的事赚钱。
9.一个人如果身体有了残疾,绝不能让心灵也有残疾。
10.生活是不公平的,不管你的境遇如何,你只能全力以赴。
11.我即使被关在果壳之中,仍自以为是无限空间之王。
12.我的手指还能活动,我的大脑还能思维;我有终身追求的理想,我有爱和爱我的亲人朋友;对了,我还有一颗感恩的心……(这句话是在一次新闻发布会上一位女记者提出的,但霍金还是以恬静的微笑这样回答)霍金不仅以他的成就征服了科学界,也以他顽强搏斗的精神征服了世界。
公开演说
霍金出版《时间简史》后,多年来曾在英国、美国、日本、香港等地,向一般大众发表多场公开演说,叙述时间起源、宇宙终结、时光旅行,演说时其受欢迎程度犹如“摇滚巨星”。兹(zi)录部分演说:
《霍金讲演录——黑洞、婴儿宇宙及其他》
宇宙的起源(中文)
宇宙之始(英文)
时间的开始(英文)
太空及时间扭曲(英文)
上帝掷骰吗?(英文)
宇宙中的生命(英文)
科普作品
1988年:《时间简史》(A brief History of Time)
1993年:《黑洞、婴儿宇宙及其他》(Black Holes and Baby Universes and Other Essays)
2005年:《时间简史(普及版)》(A briefer History of Time)
2001年:《果壳中的宇宙》(The Universe in a Nutshell)
2002年:《在巨人的肩膊上》(On The Shoulders of Giants. The Great Works of Physics and Astronomy)
霍金三大学术赌注
霍金除了喜爱看脱衣舞表演(据说是为了研究),他亦喜欢就一些科学命题,与其他学者开赌,一时成为科学界美谈。
黑洞是否存在?
穷一生精力研究黑洞的霍金,曾担心黑洞可能只是理论上的概念,而现实中根本不存在。他为免到时自己变得一无所有,1975年他与另一名物理学家索恩(Kip Thorne)开赌:究竟黑洞是否存在。
为了进行“对冲”,霍金押注黑洞不存在。如果他“不幸”赢了,霍金虽然一生心血被毁,但索恩要向他赠上专门踼爆英国皇室丑闻的《Private Eye》杂志4年订阅,如果霍金“幸运”输了,他就要向索恩送赠色情杂志《Penthouse》的一年赠阅。
霍金在《时间简史》(1988年)曾说:“当我们1975年打赌时,我们80%肯定天鹅座X-1是黑洞,现在我会说有95%肯定,但这场赌局仍未有结果。”
裸奇点是否存在?
1991年,霍金又要求开赌,今次索恩与他站在同一阵线,对赌一方是物理学家裴士基(John Preskill)。当时的命题是,奇点应该被黑洞围绕,但没有被黑洞包围的“裸奇点”(naked singularities)是否存在。
霍金与索恩押注:裸奇点并不存在,随即与裴士基立下赌据,谁输了要向对方送上一件用来“遮蔽裸体”的T恤衫,写上适当的服输字眼。霍金于1997年修正他的理论,指出裸点有可能存在。
讯息会否在黑洞消失?
霍金在裸奇点的赌局输了,但这位好赌成瘾的物理学家即时要求再开赌。物理学家相信所有讯息一经出现,虽然会改变成不同形态,但本质上会“永恒”存在。
霍金及索恩当时指出,任何物质掉进黑洞后将会消失,黑洞中产生的辐射是“全新制造”的,与掉进黑洞中的物质无关;这一项命题,违反了量子力学,若命题正确,量子力学或要重写。裴士基反驳这项命题,双方于是开赌。
2004年,霍金出席研究会时,承认赌输了,要向对方赔上棒球百科全书《Total Baseball: the Ultimate Baseball Encyclopedia》。胜出的裴士基亲身在学术会议上,高举这本著作,霍金在台上只顾著笑。被问到为何挑选这套百科全书做战利品时,裴士基事后说:“这本书重得像黑洞,亦要更长时间才可以赶走书中的资料,有如黑洞一样。”
霍金与中国
1985年,霍金第一次来中国,在科大水上讲演厅作天体物理的学术报告。
2002年,霍金第二次来中国,在北京作主题为“膜的新奇世界”科普报告,向公众阐释他的关于天体演化的“M理论”。
2006年,霍金第三次来中国,他带来的仍然是自己关于宇宙学最新的研究,在香港科技大学体育馆主持一个题为「宇宙的起源」的演讲;在人民大会堂向北京的公众讲述《宇宙的起源》。
■畅销书之王:《时间简史》
霍金的科普著作《时间简史———从大爆炸到黑洞》在全世界的销量已经高达2500万册,从1988年出版以来一直雄踞畅销书榜,创下了畅销书的一个世界纪录。在这本书里,霍金力图以普通人能理解的方式来讲解黑洞、宇宙的起源和命运、黑洞和时间旅行等。
在《时间简史》一书的开头,霍金指出:“有人告诉我,我在书中每写一个方程式,都将使销量减半。于是我决定不写什么方程。不过在书的末尾,我还是写进一个方程,爱因斯坦的著名方程E=mc2。我希望此举不致吓跑一半我的潜在读者。”现在看来,霍金完全是多虑了。
参考资料:
1.霍金来信:生命还在,希望就在(组图)_网易新闻中心
陈省身(国语罗马字:Shiing-shen Chern,1911年10月28日—2004年12月3日),美国华裔数学家、教育家,国际微分几何大师。美国国家科学院院士、中央研究院院士,同时是法国科学院、意大利国家科学院、英国皇家学会和中国科学院的外籍院士。
1911年生于浙江嘉兴秀水县。1922年秀州中学毕业,来到天津。1923年入扶轮中学(今天津铁路一中)。1926年毕业,入南开大学数学系,1930年毕业,获学士学位。同年入清华大学任助教并攻读研究生,师从中国微分几何先驱孙光远,研究射影微分几何,1934年毕业,获硕士学位,为中国自己培养的第一名数学研究生。同年获中华文化教育基金会奖学金(一说受清华大学资助),赴德国汉堡大学学习,师从著名几何学家布拉希开(Blaschke),1936年2月获科学博士学位;毕业时奖学金还有剩余,于是又转去法国巴黎跟从嘉当(E.Cartan)研究微分几何。
1937年,陈省身担任清华大学教授;后因抗战随学校内迁至云南昆明,在北京大学、清华大学、南开大学合组的西南联合大学讲授微分几何。
1943年,应美国数学家维布伦(O.Veblen)之邀,到普林斯顿高级研究所工作。此后两年间,他完成了一生中最重要的工作:证明高维的高斯-邦内公式(Gauss-Bonnet Formula),构造了现今普遍使用的陈示性类,为整体微分几何奠定了基础。
1946年抗战胜利后,回到上海,主持中央研究院数学研究所的工作,此后两三年中,他培养了一批青年拓扑学家。1949年初,中央研究院迁往台湾,陈省身应普林斯顿高级研究所所长奥本海默之邀举家迁往美国。1949年夏,在芝加哥大学接替了E.P.Lane的教授职位;E.P.Lane正是陈省身的导师孙光远当年在美留学时的导师;在此为复兴美国的微分几何做出了重要贡献。1960年,陈省身受聘为加州大学伯克利分校教授,直到1980年退休为止。1961年当选为美国科学院院士,1963年至1964年间,任美国数学会副主席。陈省身晚年的一项重要贡献是1981年在加州大学柏克莱分校筹建以纯粹数学为主的美国国家数学研究所,他是第一任所长。
1984年退休,陈省身先后受聘为北京大学、南开大学名誉教授。1985年,受中华人民共和国教育部之聘担任南开大学数学研究所所长。同年南开大学授予他名誉博士学位。
自1986年起,中国数学会设立并承办“陈省身数学奖”。
北京时间2004年12月3日19时14分,陈省身在天津逝世。
丘成桐、吴文俊、廖山涛、郑绍远等著名学者都曾师从陈省身。
[编辑]
成就
陈省身结合微分几何与拓扑方法,先后完成了两项划时代的重要工作:其一为黎曼流形的高斯-博内一般公式,另一为埃尔米特流形的示性类论。他引进的一些概念、方法与工具,已远远超出微分几何与拓扑学的范围而成为整个现代数学中的重要构成部分。陈省身其他重要的数学工作有:
紧浸入与紧逼浸入,由他和R.莱雪夫开始,历30余年,其成就已汇成专著。
复变函数值分布的复几何化,其中一著名结果是陈-博特定理。
积分几何的运动公式,其超曲面的情形系同严志达合作。
复流形上实超曲面的陈?莫泽理论,是多复变函数论的一项基本工作。
极小曲面和调和映射的工作。
陈-西蒙斯微分式是量子力学异常现象的基本工具。
[编辑]
荣誉
陈省身获得了许多科学荣誉。
1961年,陈省身继物理学家吴健雄之后当选为第二位华裔美国国家科学院院士,这是美国科学界的最高荣誉职位。
1970年,获得美国数学协会的肖夫内奖。
1976年,获美国福特总统颁发的美国国家科学奖章,这是美国在科学、数学、工程方面的最高奖;陈省身和吴健雄是最早获得该项荣誉的华人科学家。
1983年,美国数学会“全体成就”的斯蒂尔奖。
1984年获以色列总统贺索颁发的沃尔夫数学奖,这是世界数学领域的最高奖项;陈省身是获得沃尔夫奖荣誉的第一位华裔数学家、第二位华裔科学家。
此外,他还曾获得美国数学学会颁发的Chau-venet奖(1970年)、Steele奖(1983年)。并曾获得德国洪堡奖、俄罗斯罗巴切夫斯基数学奖等奖项。另外,他在2004年获首届邵逸夫数学科学奖。11月2日,经国际天文学联合会下属的小天体命名委员会讨论通过,1998CS2小行星被命名为“陈省身星”。
陈省身曾经三次应邀在国际数学家大会上作演讲:1950年在美国波士顿的剑桥,1958年在苏格兰的爱丁堡,1970年在法国的尼斯。1950年和1970年都是一小时报告,这是国际数学家大会上最高规格的学术演讲。
陈省身曾出任美国数学学会副主席。他还是法国、意大利、中国等国的外籍院士。他也是第三世界科学院的创始发起者,英国皇家学会国外会员,巴西科学院的通讯院士,印度数学会名誉会员等。他曾被瑞士联邦理工大学、柏林工业大学、香港科技大学等多所著名大学授予荣誉博士学位。
陈省身被认为是20世纪最伟大的微分几何学家。陈省身和华罗庚、冯康被认为是三位具有世界顶尖成果和国际性影响的华人数学家。他还是菲尔茨奖得主丘成桐在伯克莱加州大学的导师。
吴文俊
吴文俊,中国人,1919年5月12日生于上海。1940年毕业于上海交通大学,1949年在法国斯特拉斯堡大学获博士学位。1951年回国,1957年任中国科学院学部委员,1984年当先为中国数学会理事长。吴文俊在数学上作出了许多重大的贡献。
拓扑学方面,在示性类、示嵌类等领域获得一系列成果,还得到了许多著名的公式,指出了这些理论和方法的广泛应用。他还在拓扑不变量、代数流形等问题上有创造性工作。1956年吴文俊因在拓扑学中的示性类和示嵌类方面的卓越成就获中国自然科学奖一等获。
机器证明方面,从初等几何着手,在计算机上证明了一类高难度的定理,同时也发现了一些新定理,进一步探讨了微分几何的定理证明。提出了利用机器证明与发现几何定理的新方法。这项工作为数学研究开辟了一个新的领域,将对数学的革命产生深远的影响。1978年获全国科学大会重大科技成果奖。
中国数学史方面,吴文俊认为中国古代数学的特点是:从实际问题出发,经过分析提高,再抽象出一般的原理、原则和方法,最终达到解决一大类问题的目的。他对中国古代数学在数论、代数、几何等方面的成就也提出了精辟的见解
吴文俊 科技名人
数学家。 上海人。 1940年毕业于上海交通大学。 1949年获法国国家科学研究中心博士学位。 1991年当选为第三世界科学院院士。中国科学院数学与系统科学研究院系统科学研究所研究员、名誉所长,中国数学会名誉理事长。中国数学机械化研究的创始人之一。 50年代在示性类、示嵌类等研究方面取得吴文俊公式、吴文......
吴文俊(1919~ )
中国数学家。中国科学院院士。1919年5月12日生于上海。1940年毕业于上海交通大学。1947年赴法国留学,先后在斯特拉斯堡、巴黎、法国科学研究中心进行数学研究,1949年获博士学位。1951年回国。历任北京大学数学系教授,中国科学院数学研究所研究员、副所长,中国科学院系统科学研究所研究员、副所长、名誉所长,数学机械化研究中心主任,中国数学会理事长、名誉理事长,中国科学院数学物理学部常务委员、主任等职。曾任全国政协常务委员。主要从事拓扑学、机器证明学等方面的研究并取得多项突出成果,是中国数学机械化研究的创始人之一。1952年刊印出版的博士论文《球纤维空间示性类理论》是对纤维空间基本问题的重要贡献。50年代在示性类、示嵌类等研究方面取得一系列突出成果,并有许多重要应用,被国际数学界称为“吴文俊公式”、“吴文俊示性类”,已被编入许多名著。这项成果曾获1956年国家自然科学奖一等奖。60年代继续进行示嵌类方面的研究,独创性地发现了新的拓扑不变量,其中关于多面体的嵌入和浸入方面的成果至今仍居世界领先地位。在庞特雅金示性类方面的成果,是拓扑学纤维丛理论和微分流形的几何学的一项基本理论研究,有深刻的理论意义。近年来创立了定理机器证明的吴文俊原理(国际上称为吴方法),实现了初等几何与微分几何定理的机器证明,达到了世界先进水平。这一重要创新改变了自动推理研究的面貌,在定理机器证明领域产生了巨大影响,并有重要的应用价值,它将引起数学研究方式的变革。这方面的研究成果曾获全国科学大会重大成果奖和中国科学院科技进步奖一等奖。在机器发现和创造定理的研究方面也取得了重要成果。
刘 徽
刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产.
贾 宪
贾宪,中国古代北宋时期杰出的数学家。曾撰写的《黄帝九章算法细草》(九卷)和《算法斆古集》(二卷)(斆xiào,意:数导)均已失传。
他的主要贡献是创造了"贾宪三角"和增乘开方法,增乘开方法即求高次幂的正根法。目前中学数学中的混合除法,其原理和程序均与此相仿,增乘开方法比传统的方法整齐简捷、又更程序化,所以在开高次方时,尤其显出它的优越性,这个方法的提出要比欧洲数学家霍纳的结论早七百多年。
秦九韶
秦九韶(约1202--1261),字道古,四川安岳人。先后在湖北,安徽,江苏,浙江等地做官,1261年左右被贬至梅州,(今广东梅县),不久死于任所。他与李冶,杨辉,朱世杰并称宋元数学四大家。早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的《数书九章》。《数书九章》全书凡18卷,81题,分为九大类。其最重要的数学成就----“大衍总数术”(一次同余组解法)与“正负开方术"(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。
李冶
李冶(1192----1279),原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回乡。1248年撰成《测圆海镜》,其主要目的是说明用天元术列方程的方法。“天元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某“,可以说是符号代数的尝试。李冶还有另一步数学著作《益古演段》(1259)也是讲解天元术的。
朱世杰
朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”(莫若、祖颐:《四元玉鉴》后序)。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算术启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创造有“四元术”(多元高次方程列式与消元解法)、“垛积术”(高阶等差数列求和)与“招差术”(高次内插法).
祖冲之
祖冲之(公元429~500年)祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。
祖冲之在数学方面的主要成就是关于圆周率的计算,他算出的圆周率为3.1415926<π<3.1415927,这一结果的重要意义在于指出误差的范围,是当时世界最杰出的成就。祖冲之确定了两个形式的π值,约率355/173(≈3.1415926)密率22/7(≈3.14),这两个数都是π的渐近分数。
祖 暅
祖暅,祖冲之之子,同其父祖冲之一起圆满解决了球面积的计算问题,得到正确的体积公式。现行教材中著名的“祖暅原理”,在公元五世纪可谓祖暅对世界杰出的贡献。
杨辉
杨辉,中国南宋时期杰出的数学家和数学教育家。在13世纪中叶活动于苏杭一带,其著作甚多。
他著名的数学书共五种二十一卷。著有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。
他在《续古摘奇算法》中介绍了各种形式的"纵横图"及有关的构造方法,同时"垛积术"是杨辉继沈括"隙积术"后,关于高阶等差级数的研究。杨辉在"纂类"中,将《九章算术》246个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分、叠积、盈不足、方程、勾股等九类。
赵 爽
赵爽,三国时期东吴的数学家。曾注《周髀算经》,他所作的《周髀算经注》中有一篇《勾股圆方图注》全文五百余字,并附有云幅插图(已失传),这篇注文简练地总结了东汉时期勾股算术的重要成果,最早给出并证明了有关勾股弦三边及其和、差关系的二十多个命题,他的证明主要是依据几何图形面积的换算关系。
赵爽还在《勾股圆方图注》中推导出二次方程 (其中a>0,A>0)的求根公式 在《日高图注》中利用几何图形面积关系,给出了"重差术"的证明。(汉代天文学家测量太阳高、远的方法称为重差术)。
华罗庚
华罗庚,中国现代数学家。1910年11月12日生于江苏省金坛县。1985年6月12日在日本东京逝世。华罗庚1924年初中毕业之后,在上海中华职业学校学习不到一年,因家贫辍学,他刻苦自修数学,1930年在《科学》上发表了关于代数方程式解法的文章,受到专家重视,被邀到清华大学工作,开始了数论的研究,1934年成为中华教育文化基金会研究员。1936年作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年应苏联普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年始,他为伊利诺伊大学教授。
1924年金坛中学初中毕业,后刻苦自学。1930年后在清华大学任教。
1936年赴英国剑桥大学访问、学习。1938年回国后任西南联合大学教授。1946年赴美国,任普林斯顿数学研究所研究员、普林斯顿大学和伊利诺斯大学教授,1950年回国。 40年代,解决了高斯完整三角和的估计这
一历史难题,得到了最佳误差阶估计(此结果在数论中有着广泛的应用);对G.H.哈
代与J.E.李特尔伍德关于华林问题及E.赖特关于塔里问题的结果作了重大的改进,至 今仍是最佳纪录。
代数方面,证明了历史长久遗留的一维射影几何的基本定理;给出
了体的正规子体一定包含在它的中心之中这个结果的一个简单而直接的证明,被称为嘉
当-布饶尔-华定理。其专著《堆垒素数论》系统地总结、发展与改进了哈代与李特尔伍
德圆法、维诺格拉多夫三角和估计方法及他本人的方法,发表40余年来其主要结果仍居
世界领先地位,先后被译为俄、匈、日、德、英文出版,成为20世纪经典数论著作之
一。其专著《多个复变典型域上的调和分析》以精密的分析和矩阵技巧,结合群表示论,具体给出了典型域的完整正交系,从而给出了柯西与泊松核的表达式。这项工作在
调和分析、复分析、微分方程等研究中有着广泛深入的影响,曾获中国自然科学奖一等
奖。倡导应用数学与计算机的研制,曾出版《统筹方法平话》、《优选学》等多部著作
并在中国推广应用。与王元教授合作在近代数论方法应用研究方面获重要成果,被称为
“华-王方法”。在发展数学教育和科学普及方面做出了重要贡献。发表研究论文200多 篇,并有专著和科普性著作数十种。
陈景润
数学家,中国科学院院士。1933 年5月22日生于福建福州。1953年毕业于厦门大学
数学系。1957年进入中国科学院数学研究所并在华罗庚教授指导下从事数论方面的研究。历任中国科学院数学研究所研究员、所学术委员会委员兼贵阳民族学院、河南大学、青岛大学、华中工学院、福建师范大学等校教授,国家科委数学学科组成员,《数
学季刊》主编等职。主要从事解析数论方面的研究,并在哥德巴赫猜想研究方面取得国
际领先的成果。这一成果国际上誉为“陈氏定理”,受到广泛引用。这项工作,使之与王
元教授、潘承洞教授共同获得1978年国家自然科学奖一等奖。其后对上述定理又作了改
进,并于1979年初完成论文《算术级数中的最小素数》,将最小素数从原有的80推进到 16
,受到国际数学界好评。对组合数学与现代经济管理、科学实验、尖端技术、人类
生活密切关系等问题也作了研究。发表研究论文70余篇,并有《数学趣味谈》、《组合 数学》等著作
中国著名数学家 许宝騄 华罗庚 陈省身 林家翘 吴文俊
陈景润 丘成桐 张 衡 刘 徽 祖冲之
杨 辉 姜立夫 陈建功 熊庆来 苏步青
江泽涵
回答者:hqm4721 - 高级经理 七级 4-21 14:20
评价已经被关闭 目前有 4 个人评价
好
100% (4) 不好
0% (0)
对最佳答案的评论
太好了
评论者: 136569769 - 试用期 一级
陈景润 华罗庚 杨辉 祖暅 祖冲之
评论者: 122400 - 魔法学徒 一级
很齐全呢!
评论者: 不二的芥末寿司 - 试用期 一级
其他回答共 1 条
刘徽(生于公元250年左右)
是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产
贾宪
中国古代北宋时期杰出的数学家。曾撰写的《黄帝九章算法细草》(九卷)和《算法斆古集》(二卷)(斆xiào,意:数导)均已失传。
主要贡献是创造了"贾宪三角"和增乘开方法,增乘开方法即求高次幂的正根法。目前中学数学中的混合除法,其原理和程序均与此相仿,增乘开方法比传统的方法整齐简捷、又更程序化,所以在开高次方时,尤其显出它的优越性,这个方法的提出要比欧洲数学家霍纳的结论早七百多年。
秦九韶(约1202--1261)
字道古,四川安岳人。先后在湖北,安徽,江苏,浙江等地做官,1261年左右被贬至梅州,(今广东梅县),不久死于任所。他与李冶,杨辉,朱世杰并称宋元数学四大家。早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的《数书九章》。《数书九章》全书凡18卷,81题,分为九大类。其最重要的数学成就----“大衍总数术”(一次同余组解法)与“正负开方术"(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。
李冶(1192----1279)
原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回乡。1248年撰成《测圆海镜》,其主要目的是说明用天元术列方程的方法。“天元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某“,可以说是符号代数的尝试。李冶还有另一步数学著作《益古演段》(1259)也是讲解天元术的。
朱世杰(1300前后)
字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”(莫若、祖颐:《四元玉鉴》后序)。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算术启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创造有“四元术”(多元高次方程列式与消元解法)、“垛积术”(高阶等差数列求和)与“招差术”(高次内插法).
祖冲之(公元429~500年)
祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。
在数学方面的主要成就是关于圆周率的计算,他算出的圆周率为3.1415926<π<3.1415927,这一结果的重要意义在于指出误差的范围,是当时世界最杰出的成就。祖冲之确定了两个形式的π值,约率355/173(≈3.1415926)密率22/7(≈3.14),这两个数都是π的渐近分数。
祖暅
祖冲之之子,同其父祖冲之一起圆满解决了球面积的计算问题,得到正确的体积公式。现行教材中著名的“祖暅原理”,在公元五世纪可谓祖暅对世界杰出的贡献。
杨辉
中国南宋时期杰出的数学家和数学教育家。在13世纪中叶活动于苏杭一带,其著作甚多。
他著名的数学书共五种二十一卷。著有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。
他在《续古摘奇算法》中介绍了各种形式的"纵横图"及有关的构造方法,同时"垛积术"是杨辉继沈括"隙积术"后,关于高阶等差级数的研究。杨辉在"纂类"中,将《九章算术》246个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分、叠积、盈不足、方程、勾股等九类。
华罗庚
中国现代数学家。1910年11月12日生于江苏省金坛县。1985年6月12日在日本东京逝世。华罗庚1924年初中毕业之后,在上海中华职业学校学习不到一年,因家贫辍学,他刻苦自修数学,1930年在《科学》上发表了关于代数方程式解法的文章,受到专家重视,被邀到清华大学工作,开始了数论的研究,1934年成为中华教育文化基金会研究员。1936年作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年应苏联普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年始,他为伊利诺伊大学教授。
1924年金坛中学初中毕业,后刻苦自学。1930年后在清华大学任教。1936年赴英国剑桥大学访问、学习。1938年回国后任西南联合大学教授。1946年赴美国,任普林斯顿数学研究所研究员、普林斯顿大学和伊利诺斯大学教授,1950年回国。40年代,解决了高斯完整三角和的估计这一历史难题,得到了最佳误差阶估计(此结果在数论中有着广泛的应用);对G.H.哈代与J.E.李特尔伍德关于华林问题及E.赖特关于塔里问题的结果作了重大的改进,至今仍是最佳纪录。
代数方面,证明了历史长久遗留的一维射影几何的基本定理;给出了体的正规子体一定包含在它的中心之中这个结果的一个简单而直接的证明,被称为嘉当-布饶尔-华定理。其专著《堆垒素数论》系统地总结、发展与改进了哈代与李特尔伍德圆法、维诺格拉多夫三角和估计方法及他本人的方法,发表40余年来其主要结果仍居世界领先地位,先后被译为俄、匈、日、德、英文出版,成为20世纪经典数论著作之一。其专著《多个复变典型域上的调和分析》以精密的分析和矩阵技巧,结合群表示论,具体给出了典型域的完整正交系,从而给出了柯西与泊松核的表达式。这项工作在调和分析、复分析、微分方程等研究中有着广泛深入的影响,曾获中国自然科学奖一等奖。倡导应用数学与计算机的研制,曾出版《统筹方法平话》、《优选学》等多部著作并在中国推广应用。与王元教授合作在近代数论方法应用研究方面获重要成果,被称为“华-王方法”。在发展数学教育和科学普及方面做出了重要贡献。发表研究论文200多篇,并有专著和科普性著作数十种。
陈景润
数学家,中国科学院院士。1933 年5月22日生于福建福州。1953年毕业于厦门大学
数学系。1957年进入中国科学院数学研究所并在华罗庚教授指导下从事数论方面的研究。历任中国科学院数学研究所研究员、所学术委员会委员兼贵阳民族学院、河南大学、青岛大学、华中工学院、福建师范大学等校教授,国家科委数学学科组成员,《数学季刊》主编等职。主要从事解析数论方面的研究,并在哥德巴赫猜想研究方面取得国际领先的成果。这一成果国际上誉为“陈氏定理”,受到广泛引用。这项工作,使之与王元教授、潘承洞教授共同获得1978年国家自然科学奖一等奖。其后对上述定理又作了改进,并于1979年初完成论文《算术级数中的最小素数》,将最小素数从原有的80推进到 16 ,受到国际数学界好评。对组合数学与现代经济管理、科学实验、尖端技术、人类生活密切关系等问题也作了研究。发表研究论文70余篇,并有《数学趣味谈》、《组合 数学》等著作。
本文来自作者[雁露]投稿,不代表碧途号立场,如若转载,请注明出处:http://www.nbtudor.com/nbtu/7180.html
评论列表(3条)
我是碧途号的签约作者“雁露”
本文概览:1.刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位。他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产。 《...
文章不错《个人之旅---二十世纪伟大的数学书》内容很有帮助